LEARNING ENVIRONMENT OF SPATIAL DATA ALGORITHMS
Jussi Nikander, Kirsi Virrantaus

Helsinki University of Technology

Department of Computer Science and Engineering
Laboratory of Software Technology
PO Box 5400, FIN-02015 TKK Finland
Department of Surveying
Laboratory of Geoinformation and Positioning Technology

PO Box 1200, FIN-02015 TKK Finland
jussi.nikander@tkk.fi , kirsi.virrantaus@tkk.fi
Abstract: Spatial data algorithms (SDA) have been taught at TKK without a specific text book since there actually is no single book which would cover the field taught in the SDA course. Spatial data processing problems covered in the course include raster processing from representation to map algebra, several vector representations, concepts of TIN and Voronoi-Delaunay duality, spatial indexing, and data storage problems. These subjects have been taught by using material collected from several sources, books and scientific articles. In order to improve both the material and the learning process a new web-based learning environment has been developed. Part of the learning environment will be automatically assessed exercises implemented using the TRAKLA2 system. The system allows the learners to simulate algorithmic operations on data structures through a graphical user interface. We have planned algorithm simulation exercises to concretize problems and solutions in SDA. Exercises are mainly algorithm simulation tasks but including also some exploration assignments. The focus in planning the exercises has been on designing meaningful and simple assignment, which would support understanding essential principles of the algorithms being taught. TRAKLA2 system has now been implemented and also used in the course during the Spring 2007. The first experiences on the use of the environment are now available.
1
Introduction

1.1
Teaching Spatial Algorithms
Spatial algorithms are taught in rather few university curricula, and there is not very much dedicated learning material available. This has inspired us to create a freely available web–based learning environment for teaching the data structures and algorithms used in geoinformatics. The environment wad developed and tested in a joint project between the Laboratory of Geoinformation and Positioning Technology and the Laboratory of Software Technology at Helsinki University of Technology. The material for the application (spatial algorithms and data structures) was taken from the existing course material. The course Spatial Data Algorithms has been taught for Geoinformatics students since early 80´s. The teaching material has been collected from various sources and it now covers the field. However the material needs to be produced into more coherent form to be offered to the students. Instead a traditional book we decided to develop a learning environment that could support more both learning and teaching. This project aims to improve the teaching method, which until this has been based on interactive learning in the classroom [19]. However, when the amount of students is growing, other methods are also required.

The system is an extension to the widely–used TRAKLA2 framework [12], which is used in several institutions for teaching basics of data structures and algorithms [10]. The heart of the TRAKLA2 system is automatically assessed visual algorithm simulation exercises. The students solve these exercises by manipulating graphical representations of data structures by mouse. These manipulations constitute a sequence of algorithm simulation steps, which can be assessed by comparing it to the steps created by an actual implemented algorithm. The assessment is done automatically, and the student can gain feedback from his/her submission immediately.

The TRAKLA2 system builds upon two principles. First is algorithm visualization which is the basis for the graphical data structure presentations and the simulation sequence. Second is automatic assessment, a process where a computer is used to assess a submission to an exercise without human participation.

1.2
Algorithm Visualization

Data structures and algorithms are abstract entities that can be hard to learn. Using only (pseudo)code or a verbal description it can be very laborious to grasp how a data structure or an algorithm works. Therefore graphics are often used in both scientific articles and textbooks to illustrate data structures or algorithms. Often, the graphics take the form of a series of pictures that depict how a data structure changes during the execution of an algorithm. The creation of such picture series by hand is, however, laborious and ready–made illustrations seldom depict exactly what an instructor wishes to show to the students. Several algorithm visualization systems have been developed to help instructors to create illustrations for use in teaching [4, 11, 14, 17].

[image: image1.png]

In most algorithm visualization systems the data structure illustrations are created using pre–defined views. A view is a conceptual representation of a given entity, such as an array, a tree, a graph, or a variable. A typical tree view, for example, is a number of nodes arranged in a top–down, where each node has references to all of its child nodes and all nodes at a given distance from the root node are on the same level, as shown in Figure 1. The main goal of such a tree view is to clearly show each node’s position in the tree hierarchy and distance from the root node. The tree in Figure 1, for example, was done in approximately two minutes using the MatrixPro system [9], which is based on the same core as TRAKLA2.

The number and type of views offered varies from system to system. Some systems work fairly close to the algorithm code, and focus on showing variables, arrays and other entities included in the code [4]. Other systems focus on data structures and can include views about trees, graphs, other more complex entities [9]. In addition to pre–defined views some systems support the direct use of graphical primitives, such as points, lines, polygons, etc. for creating arbitrary visualizations [16]. However, the more degrees of freedom the user of a system has for creating visualizations, the more laborious the creation of a visualization tends to be [7].

The biggest advantage of algorithm visualization systems is, however, the ability to create algorithm animations. An algorithm animation depicts how an algorithm works, typically by illustrating how the data structures and contents of the variables used by the algorithm change as the algorithm executes. Depending on the system, the animation can either be smooth or step–wise. A smooth animation explicitly shows how values move from one place in a data structure to another, or how a new value replaces old in a variable. In a step–wise system the animation is a series of discrete steps that show the data structures and variables in different stages of the algorithm. Both methods have their advantages and disadvantages. A smooth animation can make it easier for an inexperienced viewer to follow how the values change as an algorithm executes, but can become confusing if the same data structure is simultaneously illustrated using several different visualizations.

Algorithm visualization systems are used as lecture tools, self–study tools, and in exercises. However, it has been noted that merely viewing algorithm animations does not improve learning. Instead, the learner must actively interact with the system in a meaningful manner [5].

1.3
Automatic Assessment

Automatic assessment is a process where a computer assesses an exercise submission without human intervention. The main motivation for using automatic assessment is to reduce the workload of the instructors: when a course has hundreds of students assessing student submissions by hand would be an enormous task. There are, however, several other advantages to automatic assessment. A learner can gain immediate feedback on the submission. Also an automated system can assess all submissions objectively, and can assess the same submission multiple times, enabling iterative exercises where the learner can improve his/her answer based on feedback. Furthermore, web–based automatic systems can be accessed from any place at any time, giving the learners the option of doing their exercise whenever they want and where–ever they want. [13]

Automated systems also have many disadvantages. Setting up a system may be very time–consuming, the feedback given by an automated system is not as robust and informative as feedback that can be gained from an instructor, and an automatic system is not as flexible as a human tutor, to name a few.

Automated systems are, however, gaining more and more popularity, especially as class sizes tend to increase in many institutions. Especially in computer science education automatic assessment have a long history, especially in assessing programming assignments [2]. A good overview of the current use of automatic assessment in CS education can be found in this report [1]. The report describes four categories of automatic assessment into five categories: multiple–choice exercises, textual answers, programming assignments, and visual answers.

“Multiple–choice exercises” are technically very simple to create, and therefore perhaps the most often–encountered type of automatic assessment. They are used in several places that have nothing to do with education, such as trivial quizzes on various websites. In educational context, the main challenge when using multiple–choice exercises is to find believable wrong answers in order to make the exercises challenging enough.

The category “textual answers” includes all automatic assessment systems where the submissions are text in a natural language. These range from simple fill–in–blank exercises to systems that try to automatically assess essays. The field of “automatic assessment” of essays has been around for decades, and there is still much active research in the area, such as [8]. Automatic assessment of essays is, however, a very complex issue.

The category of “visual answers” includes all exercises where the submissions are graphical. Some type of information visualization, be it UML diagrams [3], graphical depiction of a formal automaton [18], or algorithm visualization [12] is used in the creation of the submissions.
2
The TRAKLA2 System

TRAKLA2 is an automated assessment system that was first taken into use at the Helsinki University of Technology in the year 2003. For the first year, it was used together with the old TRAKLA–system [6], before replacing the old system completely. The old TRAKLA–system had been in use from the year 1991, although several enhancements had been done to the system over the years. TRAKLA2 has also been taken into use at the University of Turku, Tampere University of Technology and Åbo Akademi. Students have typically been happy to use the system and feel that it helps them to study [10]. The main application area of TRAKLA2 is basic data structures and algorithms.

The system consists of two parts: a web environment and a Java applet. The web environment handles user authentication, delivery of content, bookkeeping and other course maintenance tasks. The web environment is generic and can be used together with any course or any Java applet that conforms to a given interface. The Java applet is embedded in the web environment. Using the applet the students can solve TRAKLA2 exercises.

The exercises in the system are visual algorithm simulation exercises [12] that are solved through the applet. In a visual algorithm simulation exercise the learner is given a number of data structures that are illustrated using algorithm visualization techniques. The learner then needs to manipulate the visualizations using the mouse, and make modifications to the data structures that simulate the modifications a real algorithm would do. The learner manipulates the visualizations by clicking on a desired part of a data structure, or drag–and–dropping values to new positions. All the manipulations the user does are reflected to the data structure being visualized.

[image: image2.png]

Figure 2 depicts a typical TRAKLA2 exercise. On top is the control panel, which the learner can use to move backwards and forwards in the simulation sequence he or she had performed, reset the exercise, view the model answer or submit the exercise. The learner can also use the control panel to change the font size in the applet. Underneath the control panel are the visualizations. In this particular exercise the input is a binary tree that the learner needs to traverse in preorder. The learner can traverse the tree by drag–and–dropping the keys from the tree nodes to the linked list visualized under the tree. When a key is dropped to the linked list, it is copied there. If the learner traverses the tree in the correct order, he or she will put all the keys into the linked list in the correct order. Under the visualizations is the status bar, which shows the student identification (in this case a student identification number), the points the student has gained from the exercise and the maximum possible points, and the number of times the student has submitted the exercise.

The TRAKLA2 applet is embedded in a web page. The page includes exercise description, instructions how to use the applet for solving the exercise (that is, what is the semantics of clicking on different visualizations, if any, what parts of the visualizations can be dragged, etc.) and the pseudo-code for the algorithm. The web page can also include links to other learning material.

The learner submits the exercise by clicking on the “submit”–button on the control panel. When a learner submits an exercise, the algorithm simulation sequence he or she has created is compared to the sequence created by a real algorithm. The number of points awarded for an exercise depends on how many correct steps of the algorithm the learner has managed to simulate. The submission is assessed immediately after the learner has submitted it, and he or she is given textual feedback on the submission. The feedback includes the number of correct simulation steps performed, the points gained from the submission, and may also include additional context–sensitive feedback. Some exercise can, for example, give some hints to what errors the learner made in his/her simulation sequence.

At any time the learner can click the “model answer”–button to see the model answer to the exercise. The model answer is a visual algorithm animation which shows how the real algorithm manipulates the visualizations. In the case of traversal exercise, the model answer shows the order in which the keys are added to the linked list. After the learner has viewed the model answer to the exercise, he/she cannot submit it before the exercise has been reset.

At any time the learner can click the “reset”–button in order to reset the exercise. When the exercise is reset, a new set of input values is created and the learner is given a new exercise instance. It is also possible to make exercises where the learner is given the same input until he has submitted it; in such cases the model answer cannot be viewed until the exercise has been submitted.

3
The Spatial Data Algorithm Exercises

The implementation of the spatial data algorithm exercises required two extensions to the TRAKLA2 framework. The system had originally been designed for the visualization basic data structures that store one–dimensional data values. Therefore the focus of the visualization was to show the internal hierarchy of the visualized data structures. The structures were visualized using four commonly used and well–known data structure views: array, list, tree, and graph.

[image: image3.png]

For the visualization of multidimensional spatial data such views are, however, insufficient, since a view that concentrates on the connections between data structure elements cannot give an intuitive visualization for the relationships between multidimensional data values [15]. Furthermore, the data structures included in the system did not support multidimensional data. All data values were treated as text strings and were visualized as such. Therefore, in order to be able to create spatial data algorithm exercises for the TRAKLA2 system both new visualizations and support for new data types of data and data structures were required.

The creation of new data types and support for new data structures is fairly straight–forward in TRAKLA2. The framework has excellent support for the creation of new data structures. The support for multidimensional data, on the other hand, did require some expansions to the framework. The bigger challenge, however, was to create a useful new visualization that can illustrate both multidimensional data and the data structures used to store them. This new visualization view is called area, and it visualizes a given data structure as a two–dimensional plane, illustrating all data values as geometric shapes (points, polylines, polygons, circles, etc.). Substructures of the data structure are shown as sub areas of the area. An example of an area and tree views of the same structure can be seen in Figure 3.

As can be seen in Figure 3 it is also possible in TRAKLA2 to create two different, simultaneous views of the same data structure. When one of the views is manipulated, the changes are shown in both views. This is crucial in many TRAKLA2 exercises: when the data structures are manipulated through visualizations it may be necessary to see both how the data values are arranged in the area, and how the data structure is structured. Without having both of these views, the learner would not be able to know both of these things and therefore would be unable to grasp how the algorithm works or what is the next simulation step he or she should do.

Currently there are eleven exercises that have been implemented. Nine of these were used on the spring 2007 Spatial Data Algorithms -course at Helsinki University of Technology. The implemented exercises cover the following spatial problems, data structures, and algorithms:

 • Finding line segment intersections using line sweep

 • Insertion of items to Point–Region Quad tree
 • Polygon traversal using no extra memory

 • Insertion of items to an R–tree

 • Expanding Wave method for finding Delaunay triangulation

 • Testing whether a point is inside a polygon

 • Testing whether a point is inside a polygon that is stored in an R–tree

 • Douglas–Peucker line simplification

 • Finding visible vertices using rotational sweep

 • Finding a closest pair of points using divide–and–conquer

 • Constructing valid Delaunay triangulation or Voronoi diagram for a given set of points

3.1
Example: Douglas–Peucker Line Simplification

The Douglas–Peucker line simplification algorithm is a well–known method for decreasing the number of points in a polyline without changing the line’s overall shape too much. The input for the algorithm is the polyline to be simplified, and the algorithm uses a stack during its execution. The output is a simplified polyline.

Figure 4 shows an example simulations sequence from the Douglas–Peucker line simplification exercise in TRAKLA2. Three data structures are visualized in the exercise: the polyline to be simplified, the stack used in the algorithm, and the simplified polyline. The input polyline is visualized using white in the area visualization on the top of the visualization. In the area visualization the points on the polyline are also visualized in blue, and the simplified polyline in solid red. The area visualization also visualizes the candidate lines found during the execution of the algorithm in dashed red, the buffer around a candidate line, and the distance vector from the candidate line to a point. The distance is also given as numerical value for the learner, but this is not shown in the figure.

The stack is visualized using two visualizations that are located below the area visualization: on the left is an array that shows the contents of the stack. The stack top is the rightmost element in the array. The stack top is also visualized to the right of the stack visualization. The reason for two different visualizations is to prevent the learner from manipulating any other stack elements but the top one while still being able to see all the elements in the stack.

[image: image4.png]zsn:(3)
240 -
220 _
- 2002
Z 1802 ® 5
= 160
- 1402
1zn; 1202 ®3 .10
1002 LIPS “~
- z .
80_ 80> A% -
4 60 _ \‘
e LES] . --;'—‘— g s ®)2 ., S
20 202
0TV TV

0 20 40 60 B0 100120140160 180200 220240 260 280 300 320 340 360 360400420 440 0 20 40 G0 80 100120140160 180200220 240 260 280 300 320 340 360 380400420440

Stack Stack to

Stack Stack to

|10

The simplified The simplified polyline The simplified

The simplified polyline has two visualizations. First, it is shown in the top area visualization as solid red polyline. Second, a linked list view that shows all the points in the simplified polyline is at the bottom of the figure. Again, the two visualizations are included because of required interaction. The learner can add points to the simplified polyline by adding them to the list visualization.

The learner can do the following operations in the exercise. He/she can drag– and–drop points from the top visualization to the stack by dropping them to the stack top, or to the simplified polyline by dropping them to the list visualization. When there are elements in both the stack and the simplified polyline, the exercise applet automatically draws the candidate line between the top element of the stack and the last element of the list. The buffer around the candidate line is also visualized. The learner can now calculate the distance a point has from the candidate line by clicking on a point in the top visualization. The learner can also drag elements from the stack top to the list visualization. These operations are sufficient for simulating all the modifications the Douglas–Peucker line simplification algorithm does to the data structures.

In first part of Figure 4 the last operation the learner has done is to click on point number 9, which has caused the applet to draw the distance vector from the candidate line. The distance of the point is also shown for the learner, but cannot be seen in the figure. In the second part, the learner has dragged and dropped point 9 to the stack, which has caused the applet to draw a new candidate line between points 7 and 9. From the visualization it can clearly be seen that point 8 is inside the buffer zone, and therefore the line between 7 and 9 can be accepted to the simplified polyline. In the third part, the learner has dragged point 9 from the top of the stack to the simplified polyline list visualization, which has caused the applet to draw a new candidate line between points 9 and 10.
4
Conclusions

TRAKLA2 has now been used in the class for Geoinformatics students and we have the first results about the use. In general we can say that the students enjoy the virtual learning method because it gives them the freedom to learn whenever and where-ever. For some students with less pre-knowledge on regular algorithms to go directly to the spatial exercises has been difficult. TRAKLA2, however gives the possibility to learn the basic non-spatial algorithms first and then come back to spatial ones. The learning environment offers spatial algorithms as an application field of general algorithms and data structures and as such motivates the students to get also better preliminary studies. On the other hand, some students on computer science might become interested on spatial algorithms when they are offered for them as examples of applications. Spatial algorithms can not be taught without visualizations and the environment also supports the teacher, who can use the visualizations during his/her lectures when explaining the algorithms. The application is going to be developed further as a co-operation between the Laboratory of Geoinformation and Positioning Technique and the Laboratory of Software Technology at Helsinki University of Technology.
REFERENCES
 [1] J. Carter, J. English, K. Ala-Mutka, M. Dick, W. Fone, U. Fuller, and J. Sheard. ITICSE working group report: How shall we assess this? SIGCSE Bulletin, 35(4):107–123, 2003.

[2] G. E. Forsythe and N. Wirth. Automatic grading programs. Communications of the ACM , 8(5):275–278, 1965.

[3] C. Higgins, P. Symeonidis, and A. Tsintsifas. The marking system for Course-Master. In Proceedings of the 7th annual conference on Innovation and Technology in Computer Science Education , pages 46–50. ACM Press, 2002.

[4] C. D. Hundhausen and S. A. Douglas. Low-fidelity algorithm visualization. Journal of Visual Languages and Computing , 13(5):449–470, Oct. 2002.

[5] C. D. Hundhausen, S. A. Douglas, and J. T. Stasko. A meta-study of algorithm visualization effectiveness. Journal of Visual Languages and Computing, 13(3):259–290, June 2002.

[6] J. Hyvönen and L. Malmi. TRAKLA – a system for teaching algorithms using email and a graphical editor. In Proceedings of HYPERMEDIA in Vaasa, pages 141–147, 1993.

 [7] P. Ihantola, V. Karavirta, A. Korhonen, and J. Nikander. Taxonomy of effortless creation of algorithm visualizations. In Proceedings of the 2005 international workshop on Computing education research , pages 123–133, New York, NY, USA, 2005. ACM Press.

[8] T. Kakkonen and E. Sutinen. Automatic assessment of the content of essays based on course materials. In Proceedings of the International Conference on Information Technology: Research and Education 2004 (ITRE 2004) , pages 126–130, London, UK, 2004.

[9] V. Karavirta, A. Korhonen, L. Malmi, and K. StÃ¥lnacke. MatrixPro - A tool for on-the-fly demonstration of data structures and algorithms. In Proceedings of the Third Program VisualizationWorkshop , pages 26–33, The University of Warwick, UK, July 2004.

[10] M.-J. Laakso, T. Salakoski, L. Grandell, X. Qiu, A. Korhonen, and L. Malmi. Multi-perspective study of novice learners adopting the visual algorithm simulation exercise system TRAKLA2. Informatics in Education , 4(1):49–68, 2005.

[11] P. LaFollette, J. Korsh, and R. Sangwan. A visual interface for effortless animation of C/C++ programs. Journal of Visual Languages and Computing , 11(1):27–48, 2000.

[12] L. Malmi, V. Karavirta, A. Korhonen, J. Nikander, O. Seppälä, and P. Silvasti. Visual algorithm simulation exercise system with automatic assessment: TRAKLA2. Informatics in Education , 3(2):267 – 288, 2004.

[13] L. Malmi, A. Korhonen, and R. Saikkonen. Experiences in automatic assessment on mass courses and issues for designing virtual courses. In Proceedings of The 7th Annual SIGCSE/SIGCUE Conference on Innovation and Technology in Computer Science Education, ITiCSE’02 , pages 55–59, Aarhus, Denmark, 2002.

ACM Press, New York.

[14] A. Moreno, N. Myller, E. Sutinen, and M. Ben-Ari. Visualizing programs with Jeliot 3. In Proceedings of the International Working Conference on Advanced Visual Interfaces , pages 373 – 376, Gallipoli (Lecce), Italy, May 2004.

[15] J. Nikander, A. Korhonen, E. Valanto, and K. Virrantaus. Visualization of spatial data structures on different levels of abstraction. In G. Rössling, editor, Fourth Program Visualization Workshop , Florence, Italy, Awaiting publication.

[16] W. Pierson and S. Rodger. Web-based animation of data structures using JAWAA. In Proceedings of the 29th SIGCSE Technical Symposium on Computer Science Education , pages 267–271, Atlanta, GA, USA, 1998. ACM Press, New York.

[17] G. Rössling, M. Schuler, and B. Freisleben. The ANIMAL algorithm animation tool. In Proceedings of the 5th Annual SIGCSE/SIGCUE Conference on Innovation and Technology in Computer Science Education, ITiCSE’00 , pages 37–40, Helsinki, Finland, 2000. ACM Press, New York.

[18] V. Tscherter, R. Lamprecht, and J. Nievergelt. Exorciser: Automatic generation and interactive grading of exercises in the theory of computation. In Fourth International Conference on New Educational Environments , pages 47–50, 2002

[19] Virrantaus, K. Interactive education in the classroom – not a competitor but a partner for e-learning, Proceedings of the FIG working week, Seoul, 2001.

�

Figure 1: A typical visualization of a tree

�

Figure 2: A TRAKLA2 applet containing tree traversing exercise

�

Figure 3: Area and tree views of a PR-Quadtree. Subareas covered by tree nodes are visualized as rectangles.

�

Figure 4: A learner–made simulation sequence of the Douglas–Peucker line simplification exercise during three different stages.

